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Abstract. Within the framework of the strong-coupling polaron theory the problem of a two- 
dimensional electron coupled to LO phonons under an external magnetic field is studied. 
When a suitably modified coherent phonon state interrelating the magnetic field and the 
polaron counterparts of the problem is adopted, it is seen that the theory reproduces the 
desirable asymptotic limits attained by the perturbation or the usual adiabatic theories. 
Moreover, the theory indicates that an abrupt ‘stripping transition’ in the internal structure 
of the magneto-polaron with varying magnetic field intensity is favoured as investigated by 
Wu, Peeters and Devreese. 

1. Introduction 

Even though the problem of a polaron in a magnetic field is a rather old subject, it has 
recently received increasing attention in the context of quasi-two-dimensionally confined 
quantum systems. In view of the innumerable studies devoted to both three-dimensional 
(3D) and two dimensional (2D) magneto-polarons, we see that the problem, besides 
displaying distinctive qualitative features in the different regimes of the magnetic field 
intensity and the electron-phonon coupling strength, is also attractive from a formal 
point of view. Among various methods developed on the basis of existing polaron 
theories, the Feynman path-integral formulation is intended to be the most powerful 
technique interpolating between all the regimes of the problem. Wu et aZ(l985) have 
elaborated the ground-state property of the 2D polaron by generalising the Feynman 
variational theory so as to include the influence of an external magnetic field of arbitrary 
strength. They have raised the possibility that, similar to the bulk case (Peeters and 
Devreese 1982, Lepine 1985), the 2~ polaron may undergo an abrupt ‘stripping 
transition’ in its internal structure at sufficiently strong electron-phonon couplings and 
high magnetic fields. Whether or not the change in the state of the system as a function 
of the magnetic field is in fact abrupt is, however, controversial. The regime of strong 
electron-phonon interactions and/or large magnetic fields therefore deserves special 
emphasis. 

In order to investigate the possibility of discontinuous behaviour of the magneto- 
polaron, we would like to consider the strongly coupled case within a Buimistrov-Pekar 
(Buimistrov and Pekar 1957,1958) type of variational scheme modified so as to account 
for the distinctive regimes where the effect of either the electron-phonon coupling or 
the magnetic field dominates over the other. Although most of the formulation that we 
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follow in this work applies to any type of polaron, for the present we restrict our 
considerations to polar optical mode coupling and, for simplicity, ignore motion in the 
direction parallel to the magnetic field. 

2. Theory 

Using the symmetric gauge for the vector potential, i.e. A = (B/2) (  - y ,  x ,  0 ) ,  the Ham- 
iltonian describing an electron (in the x-y plane) coupled to bulk LO phonons with a 
frequency = w o  is given by 

H = H O  + 

H ,  = p :  + p ;  + a(+wC)2(x’ + y * )  + &cc),l ,  

U ~ U Q  + vQ[uQ exp(i q p )  + a b  exp(-i q p ) ]  (1) 

(2)  

Q Q 

where p = xP + y j ,  I ,  = xpy - y p n  and cc), is the dimensionless cyclotron frequency 
expressed in units of coo. The interaction amplitude is related to the electron-phonon 
coupling constant a and the phonon wavevector Q = q + q,i through VQ = (4~7da/)~/*/Q. 
It should be noted that all physical quantities and operators have been written in 
dimensionless form with hwo being selected as a unit of energy and (h/2moo)1/2 as a unit 
of length. 

The variational procedure followed in this work assumes the electron and lattice 
variables to be totally separable (Pekar 1954) with the phonon part of the wavefunction 
given as 

ph = exp(S) 1 O) ( 3 )  
with exp(S) being a coherent state operator which creates the optimal lattice deforma- 
tion surrounding the mean charge density of the electron or of its orbit. 

Before setting up the coherent phonon state appropriate to the present problem, we 
would like to re-emphasise that the combined effect of the magnetic field and the Frohlich 
interaction leads to rather involved and totally different features depending on the 
strength of electron-phonon interaction and the magnetic field. The qualitative aspects 
of the system become simple, however, in two extremes. 

For large a and w, 4 1 the problem simplifies to an almost free strongly coupled 
polaron in which the lattice deformation is taken to be centred around the average 
electron position. Clearly, in the other extreme of a large magnetic field the situation is 
somewhat different, In this limit the lattice can only respond to the mean charge density 
of the rapidly orbiting electron and hence acquire a static deformation over the entire 
Landau orbit. Thus, one readily notes that, in spite of a small coupling constant, a 
pseudo-adiabatic condition can be reached when 0, % 1. 

A further important remark concerning the high-field limit is that, at weak polar 
couplings ( a  < l), the usual adiabatic theory gives E = Iw, - &a- for the 
ground-state energy which differs from the correct value by a factor of 2-’/’ in the 
polaronic term (see Larsen (1986) for instance). The reason for the fault lies in the fact 
that the most efficient coherent phonon state should not be taken as centred on the 
average electron position but on the orbit centre po = x o i  + y o j  (Landau and Lifshitz 
1965) where 

xo = 4 2  - (2 /WClP ,  Yo = Y / 2  + (2/Wc)Px.  (4) 
In fact, the role which the orbit centre coordinates play in the theory and, for large w,, 
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the necessity of making the deformation centred at po were emphasised earlier in an 
elaborate discussion by Whitfield et a1 (1976). 

Therefore, in an attempt to bring about a unified scheme in the overall range of w,, 
we propose a coherent phonon state where the operator S in equation (3) has the form 

( 5 )  

in which the variational weights FQ and GQ are intended to interrelate the polaron and 
magnetic field counterparts of the problem. Clearly one expects either FQ or GQ to 
dominate over the other in weak or large magnetic fields, respectively. For a sufficiently 
large w, the theory is expected to conform totally to that suggested by Whitfield et a1 
(1976). 

For the electron part of the trial state, we use the linear combinations of the positions 
and momenta of the electron as operators: 

s = C { [ F Q  + G Q  exp(iq ~ o > l a Q  - [ F Q  + G Q  exp(-iq * ~o>Ia’e> 
Q 

x ,  = ( i / f i ) ( b ,  - b;) p ,  = ( v 7 2 ) ( b ,  +b; )  [b,, b J ]  = d,,, . (6) 

The index j refers to the x and y directions, and 0 is an adjustable parameter. 
Defining the ground state IO’) by 

a Q  / O r )  = b, IO’) = 0 (orlor) = 1 (7) 

and optimising the expectation value of H’ = exp(-S) Hexp(S) with respect to FQ and 
GQ, we obtain 

F Q  = V Q ~ Q  G Q  = v Q g Q  (8) 

fQ = (s-s8)/(1-s8) gQ = - s 8 >  (9) 

where 

with 

which has to be further minimised with respect to a 

3. Results and conclusions 

In the extreme limits of strong and weak fields, we attain explicit asymptotic expressions 
for the ground-state energy. For weak electron-phonon coupling and large magnetic 
fields, we achieve the ‘stripped’ polaron state where the lattice is thought to be responding 
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only to the overall motion of the electron in its Landau orbit. For the parameters in 
equation (U) ,  we obtainfQ+ 0, gQ = so with o = w,/2, and 

E = &w, - d q  8’0 = $CO, - ;a(nw,)l/* (13) i: 
which is identical with the second-order perturbation result of Larsen (1986). 

In the remaining extreme of weak fields ( a  9 1, CO, 4 l ) ,  we have g, + O, fQ = s and 

E = ;U + i&K1 - ; a ( ~ ~ o ) l / ~  (14) 

in which the dominant terms are the first and the third, and the second term is only a 
small correction. We find that the optimal U-value which minimises the dominant part 
is (x/4)a2. Substitution into equation (14) yields 

(15) E =  - -  ina2[1 - (2wc/na2)2] 

which is the 2~ analogue of the corresponding bulk value. In fact, the corresponding 3~ 
ground-state energy can readily be obtained from equation (14) by including 
(O’lp:/O’) = a/4 and further making the 2D electron position p in equation (1) of a 3~ 
type so that Q2 replaces q2 in equation (10). The third term in equation (14) then 
conforms to -a(o/n)li2 and one obtains 

E = - (&*/3n)[l - $ ( ~ X L O , / ~ L Y ~ ) * ]  (16) 

which is the same as that given by Lepine (1985) and Tokuda and Kat0 (1987) for large 
a and small w,. 

An interesting remark concerning this limit is that equation (15) gives a self-energy 
correction of order CO: a-* whereas the corresponding term reported by Wu et al(1985) 
is proportional to In our opinion the distinction encountered here is because the 
present approximation leads to a qualitatively distinguishing characterisation of the 
system other than that of a strongly coupled polaron orbiting as a rigid entity as an 
effective particle. We think that the description displayed by the present model consists 
of a deep self-induced potential well confining the charge-density fluctuations of the 
electron which is further under the influence of a weak magnetic field. The polaron thus 
formed is stationary and centred essentially at the mean electron position rather than 
the centre of a complete Landau orbit as implied by the fact that G, in equation ( 5 )  
becomes zero in the limit a 9 1 , w, 4 1. We refer to this situation as the ‘self-trapped’ 
phase with the ground-state energy (-na2/8) being modified only slightly by the mag- 
netic field. 

In order to explore the ground-state property in the overall range of the magnetic 
field, one requires numerical techniques. In view of our results, we find that the theory 
is a fairly good approximation not only in the asymptotic limits of weak and strong fields 
but also for intermediate field strengths, giving a description of the change in the system 
as a function of w,. It should be pointed out that equation (12) does not always have a 
unique minimum. Below a certain value of the cyclotron frequency, we observe that a 
second locally stable minimum appears, indicating that in the transition region both 
types of phase (stripped and self-trapped) may coexist. 

Taking a large enough coupling constant (a = 4), in figure 1 we plot the ground-state 
energy against w, in the region where the polaron changes its state. Starting from the 
high-field limit, the only U-value minimising equation (12) is $wc relevant to the stripped 
phase of polaron where the lattice deformation is over the entire electron orbit rather 
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Figure 1. The ground-state energy (in hw,) as a function of 0, for a = 4: . . . . , metastable 
state. 

than the electron itself. At about CO, = 8.6 the minimum corresponding to the self- 
trapped phase starts to appear, and at CO, = 7.11 the two distinct solutions cross over. 
Below the crossing point the energy of the self-trapped phase is found to be lower than 
that in the stripped phase and, as the cyclotron frequency is reduced even more, the 
energy profile displays dominantly the trapped state of the system as given by equation 

We note that in most respects the present model is capable of reproducing similar 
qualitative features to those obtained by Wu eta1 (1985); however, it yields energy upper 
bounds considerably above the results of the Feynman variational approach (cf table 1). 
The reason for the discrepancy is mostly due to the superiority of the Feynman path- 
integral theory to the strong-coupling approximation. Therefore, rather than making 
full correlation with the numerical values attained by the path-integral treatment, we 
give most emphasis to the qualitative description of the strongly coupled magneto- 
polaron within the framework of the coherent phonon state introduced through 
equation (5 ) .  

In addition to the ground-state energy, we have also plotted the magnetisation p = 
- a E/d o,, and the susceptibility x = - a * E/d as a function of CO, for (Y = 4 (cf figures 
2 and 3). We see that, as the polaron undergoes a change of state as described above, 
both p and x exhibit an abrupt behaviour at almost the same place as obtained by Wu et 
a1 (1985). The discontinuities encountered here and the cusp in the energy profile at the 
crossover point can be regarded as giving further insight into the complicated nature of 
the problem, confirming the possibility in favour of a phase-transition-like behaviour of 

(15) * 

Table 1. The ground-state energy (in hw,) against w, for a = 4. The upper energy values 
refer to the present work and the lower to the Feynman path-integral approach of Wu et a1 
(1985). 

wc 0.1 0.2 1 2 10 

E (present work) -6.2836 -6.2833 -6.2738 -6.2445 -6.2105 
E (Wuetall985) -8.2074 -8.2067 -8.1899 -8.1502 -7.7004 
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Figure 3. Susceptibility as a function of w, for 
a=4 .  

wc 4 

Figure2. Magnetisationp - 4 referred to the free- 
electron value as a function of w, for a = 4 

the system. Whether or not a ‘stripping’ phase transition indeed takes place is, however, 
still an open question. 

In summary, this work revises the problem of a 2~ polaron in a magnetic field within 
a generalised variational scheme in the strong-coupling regime. Adopting a suitably 
modified coherent phonon state the theory is seen to give an intuitive description which 
takes into account the fractional admixture of whether the lattice deformation tends to 
cover the entire Landau orbit or the mean electron position. The conclusion which we 
draw is that the adiabatic treatment of the problem requires the displaced (coherent) 
phonon state to be in a form incorporating the two competitive contributions coming 
from the phonon coupling alone and the magnetic field alone. 
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